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Abstract

In this note, one considers a 1 d.-o.-f. oscillator consisting of a mass and a viscoelastic spring, the
rheology of which is represented by a so-called Zener 3-parameters model. Such a system has three
eigenmotions: two of them are damped with or without oscillations (as in the case of viscous damping), the
third is damped without oscillation. Introducing appropriate parameters, one has performed a detailed
discussion of the nature of these eigenmotions.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In this brief note, the following notations are used: x represents a column of n scalar
components ½xT ¼ x1; x2; :::;xnð Þ�; and M an n � n matrix.

It is well known that in the case of an N-d.o.f. viscously damped system, the motions of which
are governed by a system of equations in the form:

M €xðtÞ þ A _xðtÞ þ KxðtÞ ¼ fðtÞ; (1)
see front matter r 2004 Elsevier Ltd. All rights reserved.
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where the matrices M, A, K are real, symmetric and positive definite and where the damping forces
depend only on the current value _xðtÞ of the velocities, a search for eigensolutions in the form

x tð Þ ffi est (2)

leads to N pairs of values for s (which are real negative, or complex conjugate with a negative real
part). The question of the oscillatory nature of the eigensolutions of such systems is of permanent
interest (for instance, conditions which give rise to a non-oscillatory nature for all eigensolutions
may be found in Ref. [1]).

If one considers now an N-d.o.f. system with viscoelastic damping, the motions of which are
governed, in the time domain, by a system of equations of the form:

M €xðtÞ þ

Z t

	1

aðt 	 uÞ _xðuÞdu þ KxðtÞ ¼ fðtÞ (3)

(in which the damping forces depend on the whole history of the velocities f _xðuÞ; 	1ouotg;
with a memory functional aðt 	 uÞ weighted towards the recent past), it is worth noting that if
such a system is submitted to a harmonic excitation f tð Þ ¼ f0e

iOt; the determination of its forced

response xðtÞ ¼ XðOÞeiOt (and of all related quantities such as velocities, dissipation, dampingy)
does not require a knowledge of the eigenfrequencies and eigenmodes, because the complex
amplitude XðOÞ is governed, in the frequency domain, by the algebraic system:

½	MO2 þ KðOÞ�XðOÞ ¼ f0; (4)

the resolution of which is direct (see, for instance, Ref. [2]).
Concerning the free vibrations of such an N-d.o.f. system with viscoelastic damping, the

question of its eigenfrequencies and eigenmodes has been clarified by Adhikari in a series of
papers (see, for instance, Ref. [3]). A search for eigensolutions of Eq. (3) in the same form as Eq.
(2) leads now to m ¼ 2N þ p42N values for s, giving rise to solutions which are either damped
without oscillations or damped with oscillations. The aim of this note is to discuss the nature of
these roots in the case of a 1-d.o.f. system with viscoelastic damping, consisting of a mass and a
‘‘Zener-type’’ viscoelastic spring.
2. Viscous damping

One starts by recalling the elementary case of a classical viscously damped 1-d.o.f. system
consisting of a mass and a ‘‘solid-like Kelvin–Voigt viscoelastic spring’’ (Fig. 1).

The motions of such a system are governed by the classical equation:

m €xðtÞ þ a _xðtÞ þ kxðtÞ ¼ f ðtÞ; (5)

and it is well known that its two eigensolutions are given by xðtÞ ffi es�t; where the two conjugate
values s� may be written in the form of normalized expressions:

s� ¼ oð	d� i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 	 d2

p
Þ where o ¼

ffiffiffiffi
k

m

r
40 and d ¼

a

2
ffiffiffiffiffiffiffi
km

p 40; (6)
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Fig. 1. One-d.o.f. oscillator with Kelvin–Voigt damping.

P. Muller / Journal of Sound and Vibration 285 (2005) 501–509 503
giving rise to solutions which are either damped without oscillations when the so-called rate of
critical damping d exceeds 100%; or damped with oscillations (with a structural decreasing time
t ¼ m=2a depending on the viscous damping coefficient a—which is a purely rheological
characteristic—and on the mass m) when d is less than 100%:
3. Viscoelastic damping

One considers now the case of a viscoelastically damped 1-d.o.f. system consisting of a mass
and a ‘‘solid-like Zener viscoelastic spring’’ with characteristics m40; a40; k140 and long-term
stiffness k140 (Fig. 2):
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Fig. 2. One-d.o.f. oscillator with Zener damping.
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It will be convenient to introduce:
�
 the rheological relaxation time t0 (independent of the mass m) given by a ¼ k1t0;

�
 the instantaneous stiffness k04k1 given by k1 ¼ k0 	 k1;

�
 the rheological retardation time y04t0 (independent of the mass m) given by y0k1 ¼ t0k0:
The equation governing the motions of this system may be written as

m €xðtÞ þ k1

Z t

	1

e	ðt	uÞ=t0 _xðuÞdu þ k1xðtÞ ¼ f ðtÞ: (7)
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The search of eigensolutions in the form xðtÞ ffi est leads, by means of the change of variable:Z t

	1

e	ðt	uÞ=t0esu du ¼

Z 0

1

e	v=t0esðt	vÞð	dvÞ ¼ est

Z 1

0

e	ðsþ1=t0Þv dv ¼
est

s þ 1=t0
(8)

and of the definitions of k1 and of y0; to the following equation for s:

ms2 þ k0
s þ 1=y0

s þ 1=t0
¼ 0; (9)

or, assuming s þ 1=t0a0:

s3 þ
1

t0
s2 þ o02s þ

1

y0
o02 ¼ 0 where o02 ¼

k0

m
: (10)

Of course, Eq. (10) could be rewritten in the form

ðs 	 s0Þðs
2 þ 2d00o00s þ o002Þ ¼ 0; (11)

where o00; d00 and s0 are to be determined by the identification of Eq. (10) with Eq. (9):

2d00o00 	 s0 ¼
1

t0
;

o002 	 2d00o00s0 ¼ o02;

	 s0o002 ¼
1

y0
o02: ð12a2cÞ

The three roots of the cubic Eq. (10) may thus be written in the normalized form of:
�
 a real negative root given, from Eq. (12c), by s0 ¼ 	ð1=y0Þðo02=o002Þ; giving rise to a non-
oscillating damped solution decreasing without oscillations with a structural decreasing time
t000 ¼ 	1=s0 ¼ y0ðo002=o02Þ; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
�
 a pair of conjugate roots s� ¼ o00ð	d00 � i 1 	 d002Þ; where o00 (which may be assumed to be
40) and d00 (which may easily be demonstrated to be 40) are solutions of the nonlinear system
obtained by substituting s0 in Eqs. (12a) and (12b):

2d00o00 þ
1

y0
o02

o002
¼

1

t0
;

o002 þ 2d00
1

y0
o02

o00
¼ o02; ð13Þ

giving rise to damped eigensolutions, non-oscillating if d0041 or oscillating (with a structural

decreasing time t00 ¼ 1=d00o00) if d00o1:
4. Nature of the solutions in the case of viscoelastic damping

To exhibit the nature (oscillating or not) of the two later solutions, it is of course possible to use
the classical discussion of the roots of the cubic Eq. (10) resting on the sign of its discriminant D
(see, for instance, Ref. [4]). It appears to be more convenient here to re-write Eq. (10). Introducing
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the two nondimensional positive parameters dt and dy defined by

1

t0
¼ 2dto03dt ¼

k1

ffiffiffiffi
m

p

2a
ffiffiffiffiffi
k0

p ;
1

y0
¼ 2dyo03dy ¼

k1

k0
dtodt; (14)

and setting s̄ ¼ s=o0; Eq. (10) takes the nondimensional form:

f ðs̄Þ ¼ s̄3 þ 2dts̄2 þ s̄ þ 2dy ¼ 0; (15)

which shows that this discussion is managed by the two non-dimensional parameters dt (which
governs the first derivative y ¼ f 0

ðxÞ ¼ 3x2 þ 4dtx þ 1 and the second derivative y ¼ f 00
ðxÞ ¼

6x þ 4dt of the curve y ¼ f ðxÞ) and dy (which governs the ordinate at the origin y0 ¼ f ð0Þ ¼ 2dy of
the same curve).

Clearly, Eq. (15) has three real negative roots (giving rise to three damped non-oscillating
eigensolutions) when the two following conditions are satisfied:
(1)
 the curve has two extremums, that is the discriminant of its derivative y ¼ f 0
ðxÞ is positive:

dt4
3

4
; (16)

so that it has a relative maximum at the point:

a	ðdt; dyÞ ¼ 	
2

3
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
t 	 d2

y

q� �
; (17)

and a relative minimum at the point:

aþðdt; dyÞ ¼ 	
2

3
dt 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
t 	 d2

y

q� �
; (18)
(2)
 condition (16) being satisfied, the vertical positioning of the curve y ¼ f ðxÞ must be such as
shown in Fig. 3, between the two limiting cases of:
� Fig. 4, where f ða	Þ ¼ 0; i.e. dy ¼ d	y ¼ 	 1

2
½a3

	 þ 2dta2
	 þ a	�; and

� Fig. 5, where f ðaþÞ ¼ 0; i.e. dy ¼ dþ ¼ 	 1½a3 þ 2dta2 þ aþ�:
y 2 þ þ
That is, dy must satisfy the double inequality

d	y ¼ 	
1

2
½a3

	 þ 2dta2
	 þ a	�odyodþy ¼ 	

1

2
½a3

þ þ 2dta2
þ þ aþ�: (19)

Conversely, Eq. (15) has one real negative root and two complex conjugate roots (giving rise to one
damped non-oscillating and two damped oscillating eigensolutions) when the data m, a, k1 and k1

are such that one of the there of the following sets of conditions are satisfied:
(1)
 either:
dto
3

4
; (20)
(2)
 or:
dt4
3

4
and dyod	y ¼ 	

1

2
½a3

	 þ 2dta2
	 þ a	�; (21)
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Fig. 3. Curve y ¼ f xð Þ ¼ x3 þ 2dtx2 þ x þ 2dy: Vertical positioning when dt43
4

(o0 ¼ 1; dt ¼ 0:98; dy ¼ 0:0475 . . .).
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Fig. 4. Curve y ¼ f ðxÞ ¼ x3 þ 2dtx2 þ x þ 2dy: Case f ða	Þ ¼ 0 (o0 ¼ 1; dt ¼ 0:98; dy ¼ 0:0192 . . .).
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(3)
 or:
dt4
3

4
and dy4dþy ¼ 	

1

2
½a3

þ þ 2dta2
þ þ aþ�: (22)

5. Viscous damping, a singular rheological limit of viscoelastic damping

The rheological behaviour of both springs relating the traction T(t) on the spring to its
extension x(t) may be written as follows, using hereditary integrals with relaxation function k(t) or



ARTICLE IN PRESS

-1

0

1

-2 -1 0

Fig. 5. Curve y ¼ f ðxÞ ¼ x3 þ 2dtx2 þ x þ 2dy: Case f ðaþÞ ¼ 0 (o0 ¼ 1; dt ¼ 0:98; dy ¼ 0:0764 . . .).

Table 1

Relaxation and creep functions of Zener and Kelvin–Voigt models

Relaxation function k(t) Creep function c(t)

Zener model k1 þ ðk0 	 k1Þe	t=t0 1
k1

þ 1
k0

	 1
k1

� 	
e	t=y0

Kelvin–Voigt model k1 þ adðtÞ ¼ k0 þ adðtÞ cðtÞ ¼ 1
k1

½1 	 e	t=y0 � ¼ 1
k0
½1 	 e	t=y0 �
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creep function c(t):

TðtÞ ¼

Z t

	1

kðt 	 uÞ
dx

du
ðuÞdu3xðtÞ ¼

Z t

	1

cðt 	 uÞ
dT

du
ðuÞdu; (23)

where, if there are discontinuities, the derivatives are to be taken in the sense of distributions.
The relaxation and creep functions are recalled in Table 1 (where dðtÞ is Dirac’s distribution).
It is worth noting that the Kelvin–Voigt model seems to be obtained from the Zener model

when, keeping k1 and a constant, k1 ! 0 (hence k0 ! k1). As expected, the rheological
relaxation time t0; given by a ¼ k1t0; disappears (it becomes infinite). But the Kelvin–Voigt model
has a retardation time y0 given by a ¼ k1y0; and not by the limit of the relation y0k1 ¼ t0k0:
6. Conclusion

As mentioned earlier, the question of the eigenfrequencies and eigenmodes of an N-d.o.f.
system with viscoelastic damping has been clarified by Adhikari. In the case of a 1-d.o.f. system
with viscoelastic damping represented by a generalized rheological model with 2n þ 1 parameters,
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the characteristic equation generalizing (9) takes the form:

ms2 þ k0

s þ 1
y1

� 	
s þ 1

y2

� 	
. . . s þ 1

yn

� 	

s þ 1
t1

� 	
s þ 1

t2

� 	
. . . s þ 1

tn

� 	 ¼ 0 (24)

and it is easy to prove the result (more accurate than in the N-d.o.f. case) that, due to the basic
properties of the relaxation modulus k(t), the set of the n þ 2 solutions always split into:
�
 n solutions decreasing without oscillations with structural decreasing times t01; . . . ; t
0
n;
�
 two solutions which decrease with or without oscillations (exactly as in the case of viscous
damping).
In other words, in the case of a 1-d.o.f. system with viscoelastic damping, one cannot have more
than two eigensolutions decreasing with oscillations.

By restricting in this note the area of the investigation to the simplest three parameter Zener
model, a complete analytical representation of the solution has been obtained.
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